MUSIC project: intelligent management of manufacturing information to drive metal and plastic production line for injected components

MSc. N. Gramegna  (EnginSoft S.p.A., Italy),  Prof. F. Bonollo (Università di Padova – DTG, Italy)

Presenter: N. Gramegna, Manager of Manufacturing Unit at EnginSoft and MUSIC project coordinator

THEME: Emerging Issues (Future Industrial Needs) or Analysis Management (Manufacturing Quality Assurance/Model)


submitted to

 nafems world congress logo


High Pressure Die Casting (HPDC) of light alloys and Plastic Injection Moulding (PIM) are two of the most representative large-scale  production-line in manufacturing field, which are strategic for the EU-industry largely dominated by SMEs. Due to the high number of process variables involved and to the non-synchronisation of all process parameters in a unique and integrated process control unit, HPDC and PIM are most “defect-generating” and “energy-consumption” processes in EU industry showing less flexibility to any changes in products and in process evolution. In both, sustainability issue imposes that machines/systems are able to efficiently and ecologically support the production with higher quality, faster delivery times, and shorter times between successive generations of products. This is the scenario of  the MUSIC project, strongly aimed at leading EU-HPDC/PIM factories to cost-based competitive advantage through the necessary transition to a demand-driven industry with lower waste generation, efficiency, robustness and minimum energy consumption. The development and integration of a completely new ICT platform, based on innovative Control and Cognitive system linked to real time monitoring, allows an active control of quality, avoiding the presence of defects or over-cost by directly acting on the process-machine variables optimisation or equipment boundary conditions. The Intelligent Manufacturing Approach (IMA) works at machine-mould project level to optimise the production line starting from the management of manufacturing information.  An Intelligent Sensor Network (ISN) monitors the real-time production acquiring the multi-layers data from different devices and an extended meta-model correlates the input and sensors data with the quality indexes, energy consumption cost function. Data homogenization, centralization and synchronization are the key aspects of control system to collect information in a structured, modular and flexible database.

Process simulation, data management and meta-model are key factors to generate an innovative Cognitive system to improve the manufacturing efficiency. The MUSIC project, in the context of FP7 EU RDT Programme, introduces new  ICT technologies at manufacturing plant with significant potential impacts: (i) strengthened global position of European manufacturing industry; (ii) larger European market for advanced technologies such as electronic devices, control systems, new assistive automation and robots; (iii) intelligent management of manufacturing information for customization and environmental friendliness.


High Pressure Die Casting, Plastic injection moulding, intelligent manufacturing, real-time monitoring, data mining,  cognitive system, sensors, optimisation, quality management.


This work was developed inside “MUSIC” Project (MUlti-layers control & cognitive System to drive metal and plastic production line for Injected Components), supported by European Union. The authors would like to thank the MUSIC consortium (

The research leading to these results has received funding from the European Union’s Seventh Framework Programme [FP7-2012-NMP-ICT-FoF] under grant agreement number  n°314145 (see Article II.30. of Grant Agreement).

 For further information on this paper and MUSIC Project please contact:


Estudio del desgaste en moldes de inyeccion de plasticos - Study of the wear on plastic injection molds

 B. Zabala, Thesis at IK-4 Tekniker UPV-EHU, 2013


The wear of Plastic Injection Moulds it is an increasing problem for the sector. Based on industrial observation and a bibliographical review, it has been concluded that the main wear mechanisms existing are erosion, corrosion and abrasion. In this document there have been defined the laboratory scale tests that make possible to simulate in a simplified way the mentioned phenomena, being possible to study they nature, the relative influence of different parameter and select the most appropriate materials to face this challenge.

For further information on this paper and MUSIC Project please contact:

Thermo-fluid dynamics model for two-phase system alloy-air inside the shot sleeve in HPDC process

R. Meneghello, Thesis at University of Padova, October 2013 and article written with E. Boesso (EnginSoft S.p.A.) December 2013


In HPDC manufacturing process, the final quality of castings is related to the injection phase: the dynamics of formation of melt waves and their reflection on the walls of the sleeve can cause defects due to air entrapment during filling. The development of numerical and mathematical models are described in the present article. The numerical model consists in the implementation of thermal equation into the open-source CFD code openFOAM™. The mathematical model consists in a Design Of Experiment (DOE) generation and execution using the previously created model. They have permit to study the correlations obtained by Response Surface Methodology (RSM) between the percentage of trapped air in function of the relevant variable parameters of the process.

For further information on this paper and MUSIC Project please contact:

 The paper will be published in the EnginSoft Newsletter, release 04/2015 (December 2015).

Comparative analysis of temperature control systems for High Pressure Die Casting Dies

P. Callegaro, Thesis at University of Padova, October 2013 and article written with G.Scarpa (EnginSoft S.p.A.)


In High Pressure Die Casting production it is necessary to keep the die temperature within a certain specified range for the following basic reasons:

  • Ensure that the casting solidifies progressively from the opposite part to the running systems, in order to reduce much more as possible the porosity
  • Reduce hot spots and make the die more isothermal
  • Modify the grain size and microstructure to improve mechanical properties
  •  Increasing the die life time

Working with a die at excessively low temperature there will be problems like premature solidification and incomplete filling of the die cavity, difficult ejection due to increase of shrink force and in consequence of high thermal gradients, rapid die wear, thermal shock of the die surface and also formation of cold shuts.

If the die temperature is too high there will be a fast release agent degradation and increased consumption, longer cycle time, unreliable casting dimensions and an increase of shrinkage porosities. Furthermore the soldering defect can appear, thereby resulting in low quality of the component and difficult ejection.

As a result, the correct die temperature is crucial to obtain a smooth and high level of productivity and to optimize the production cycle.

Numerical methods for the thermal analysis of the HPDC process are needed to shorten the cost, the design and production time and the samples to involve in finding acceptable operating conditions.  CAE tools, like MAGMASOFT and its Optimisation module MAGMAfrontier, allow to support the designer during the research of the best engineering solution.

Temperature Control Units (TCU), or Thermoregulators, are electrical mechanical devices designed to regulate dies temperature.

Thermal regulation takes place by heating or cooling a fluid, which is pushed through an electric-driven pump inside cooling channels within the die. Heat transfer is by convection between the fluid and the surface of the channels in the die and by conduction within the die steel itself.

Standard water TCUs are open tank systems which can control water temperature lower than 90°, characterized by low cost and low temperature range.

Pressurized water TCUs are closed tank system which can control water temperature near to 180°C, 200 in some cases. These systems combine the possibilities to preheat the die to high temperature and to cool it efficiently with water.

Other commonly used fluids are diathermic oils, which allow to reach a maximum temperature of  350°.

With the use of CAE software  it is possible to understand the difference between the use of oil and water.

It’s important to notice that there are also localized temperature control systems like bubblers, baffles, heat pipes and Jet Cooling systems; these are useful to control specific zones of the die, the “hot spots”.

This works aims to select the best temperature control technologies for the most recurring high pressure die casting applications. In order to achieve this purpose, the die casting processes and their temperature control systems have been studied. Furthermore, process simulations with the software MAGMASOFT have been useful for the final comparison.


High pressure die casting, quality, alluminum and alloy, foundry, simulation, optimization, mold design, filling, solidification, thermoregulation, cycle time, die life, temperature.

For further information on this paper and MUSIC Project please contact:


The influence of Sr, Mg and Cu addition on the microstructural properties of a secondaru AlSi9Cu3(Fe) die casting alloy

G. Timelli, S. Fabrizi, S. Ferraro, Materials Characterization, 85, 2013, 13-25

Effects of chromium and bismuth on secondary aluminium foundry alloys

G. Timelli, International Journal of Cast Metals Res., 26 (2013), 239-246

Effects of Bismuth on the Microstructure and Mechanical Properites of AlSi9Cu3(Fe) Die Casting Alloys

S. Ferraro, G. Timelli, A. Fabrizi,MATERIALS SCIENCE FORUM 765 (2013) 59-63

Hypereutectic Al alloys diecast at semisolid state

 E. Fiorese, International Conference Aluminium 2000, Interall, Firenze 2013

Multiscale characterisation of AlSi9Cu3(Fe) due casting alloys after Cu, Mg, Zn and Sr addition

F. Sanna, Metallurgia Italiana (AIM) 105 (2013) 13-24

 Studio preliminare di un processo innovativo per la produzione di bicchieri in materiale polimerico

S. Bagato, thesis discussed at University of Padova – DTG, 2013


Il seguente documento punta a sviluppare uno studio preliminare su un prodotto completamente innovativo sia per il mercato, sia per l’azienda.  L’ oggetto in  questione è un bicchiere in materiale polimerico dal design creativo e moderno, realizzato da un’ azienda italiana mediante 3 step distinti:

  1. Realizzazione di una preforma con un tipico processo d’ Injection molding a canali freddi.
  2. Riscaldamento della preforma in un forno a lampade ad infrarossi.
  3. Processo di Blow molding della preforma subito dopo l’ uscita dal forno, che conferisce la forma finale al prodotto.

 Lo scopo dell’ attività è quello di individuare le principali variabili di processo, standardizzando il ciclo produttivo del bicchiere, ottenendo un prodotto finito che abbia qualità coerente con le aspettative del cliente. Contemporaneamente verrà creata una defect list, che il bicchiere può presentare in seguito al processo produttivo.

Per far questo, saranno utilizzate sia simulazioni numeriche al calcolatore, sia metodi di controllo non distruttivi, come la termografia ed i liquidi penetranti. In ordine cronologico con il ciclo produttivo del bicchiere, saranno svolti i seguenti passi:

  1.   Analisi con il software Moldflow dello Step d’ Injection Molding.
  2. Analisi mediante Termografia della storia termica subita dal bicchiere, dall’ uscita dal forno ad infrarossi al posizionamento nello stampo di soffiaggio, fino all’ uscita dallo stampo di soffiaggio.
  3. Osservazione mediante il test dei liquidi penetranti della presenza o meno d’ intagli sul bordo del bicchiere.
  4. Creazione di una Banca Dati che includa per ogni test svolto tutti i parametri di input ed i relativi risultati di output, intesi come qualità del prodotto finito.

Con il processo produttivo in esame, vengono realizzati 6 modelli di prodotto finito, a partire da 4 preforme differenti, utilizzando tecnopolimeri come il Policarbonato(PC) oppure copolimeri del Polietilenetereftalato (PET). Dato il periodo di tempo limitato a 6 mesi, lo studio sarà incentrato su 1 solo modello, quello a calice modello “Backstage” (visto che dai dati delle vendite è anche quello più richiesto) e sul materiale polimerico maggiormente utilizzato dall’ azienda, il Policarbonato. In un secondo momento, i metodi d’ indagine utilizzati e i risultati ottenuti, verranno trasportati sugli  altri modelli e sugli altri materiali.

I primi 2 capitoli  puntano a descrivere il prodotto ed il relativo processo produttivo, mentre i capitoli successivi riportano le simulazioni svolte e  risultati ottenuti dai controlli non distruttivi. Per rendere più semplice e diretta la lettura, alcune immagini presenti sono tratte dal software Ansys 14.5, dove è stata implementata una simulazione dell’ intera fase di soffiaggio. Nel seguente documento, vista la fase preliminare dello studio, non si riporta l’ attività svolta per riprodurre la fase di soffiaggio.

In corrispondenza delle analisi con i controlli non distruttivi sono presenti anche una serie di richiami teorici per chiarire la finalità del controllo svolto.

Il capitolo finale, riguardante le conclusioni, contiene una banca dati riassuntiva di tutta l’ attività svolta.

Il prodotto finito è brevettato.

L’ attività svolta rientra nell’ ambito del seguente progetto Europeo: Music Multilayers Control and Cognitive System to drive metal and plastic production line for injected components( Contract n° 314145).